
J Eng Math (2009) 63:79–94
DOI 10.1007/s10665-008-9249-8

Impulsive effect on an elastic solid with generalized
thermodiffusion

Sunita Deswal · Suman Choudhary

Received: 28 December 2006 / Accepted: 16 September 2008 / Published online: 22 October 2008
© Springer Science+Business Media B.V. 2008

Abstract The theory of generalized thermoelastic diffusion with one relaxation time is employed to study the
distribution of temperature, displacement components, stresses, concentration and chemical potential in a semi-
infinite medium having an impulsive mechanical load at the origin. Using the joint Laplace and Fourier transforms,
the governing equations are transformed into a vector–matrix differential equation which is then solved by the
eigenvalue approach. The solution of the problem in the physical domain is obtained numerically using a numerical
method for the inversion of the Laplace and Fourier transforms. Results of this work are presented graphically and
are compared with the results of generalized thermoelasticity and classical elasticity deduced as special cases.

Keywords Generalized thermoelasticity · Laplace and Fourier transforms · Mechanical load ·
Thermoelastic diffusion

1 Introduction

Duhamel [1] and Neumann [2] introduced the theory of uncoupled thermoelasticity. There are two shortcomings
of this theory. Firstly, the fact that the mechanical state of the elastic body has no effect on the temperature is not in
accordance with true physical experiments. Secondly, the heat equation being parabolic predicts an infinite speed of
propagation for the temperature, which is physically inadmissible. Biot [3] developed the coupled theory of ther-
moelasticity which eliminates the first defect, but shares the second defect of uncoupled theory. In the classical
theory of thermoelasticity, when an elastic solid is subjected to a thermal disturbance, the effect is felt at a location
far from the load, instantaneously. This implies that the thermal wave propagates with infinite speed, a physically
impossible result.

During the last four decades, wide-spread attention has been given to the thermoelasticity theories which admit a
finite speed for the propagation of a thermal field. Lord and Shulman [4] reported a new theory based on the modified
Fourier’s Law of heat conduction with one relaxation time. This non-classical theory eliminates the paradox of
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infinite velocity of heat propagation and is termed as the generalized dynamical theory of thermoelasticity. Various
problems characterizing this theory have been investigated and reveal some interesting phenomena. For this theory,
Ignaczak [5] studied uniqueness of solution and Sherief [6] proved uniqueness and stability.

Modern approaches to the analytical treatment of nonclassical dynamical thermoelasticity have been described
by Hetnarski and Ignaczak [7] by reviewing five different models of a thermoelastic solid in which disturbances
are transmitted in a wave-like manner. The domain-of-influence theorem for a mixed displacement-temperature
problem of L–S theory as proved by Ignaczak et al. [8] and Ignaczak [9] has been used by them to describe the
phenomenon of propagation of a thermoelastic wave in the L–S model, showing that a thermoelastic disturbance
propagates as a wave from the given domain with a finite speed due to the applied thermomechanical load. Similar
results were also proved for four other models. Anwar and Sherief [10] and Sherief [11] developed the state-space
approach to this theory. Anwar and Sherief [12] completed the integral-equation formulation. Sherief and Hamza
[13] and Sherief and Hamza [14] solved some two-dimensional problems and studied wave propagation. Sherief
and El-Maghraby [15] solved a problem for an internal penny-shaped crack. A detailed study of thermoelastic plane
waves was made in [16–18]. A two-dimensional problem for a generalized thermoelastic half-space (L–S model)
subjected to the effects of a thermal shock has been considered by Sherief and Helmy [19].

Lamb [20] was the first to investigate a disturbance generated in a semi-infinite elastic medium by an impulsive
force applied along a line or at a point on the surface or inside the medium. Fung and Tong [21, Chap. 8] studied
the problem of a line load suddenly applied on the surface of semi-infinite body of homogeneous isotropic linear
elastic material. The disturbance due to mechanical point loads and thermal sources acting on the boundary of a
homogeneous isotropic thermoelastic half-space has been investigated by Sharma and Chauhan [22] in the context
of generalized theories of thermoelasticity. El-Maghraby [23] solved a two-dimensional problem in generalized
thermoelasticity with heat sources.

Diffusion can be defined as the spontaneous migration of substances from regions of high concentration to
regions with low concentration. There is now a great deal of interest in the study of this phenomenon, due to
its many applications in geophysics and industrial applications. The phenomenon of diffusion is used to improve
the conditions of oil extractions (seeking ways of more efficiently recovering oil from oil deposits). These days,
oil companies are interested in the process of thermoelastic diffusion for more efficient extraction of oil from oil
deposits.

Nowacki [24–27] developed the theory of thermoelastic diffusion. In this theory, a coupled thermoelastic model
is used. This implies infinite speeds of propagation of thermoelastic waves. Recently, Sherief et al. [28] developed
the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and
diffusive waves. The present study is motivated by the importance of thermoelastic diffusion processes in the field
of oil extraction.

A list of symbols used in this paper is given in the Appendix.

2 Basic equations and problem formulation

Following Sherief et al. [28], the governing equations for an isotropic, homogeneous elastic solid with generalized
thermodiffusion at uniform temperature T0 in the undisturbed state, in the absence of body forces and heat loads
are:

(i) the equation of motion

ρüi = µui, j j + (λ+ µ)u j,i j − β1�,i −β2c,i , (1)

(ii) the generalized energy equation

K�,i i = ρCE (�̇+ τ0�̈)+ β1T0( ˙ekk + τ0 ¨ekk)+ aT0(ċ + τ0c̈), (2)

(iii) the generalized diffusion equation

Dβ2ekk,i i +Da�,i i +ċ + τ c̈ − Dbc,i i = 0, (3)
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Impulsive effect on an elastic solid 81

(iv) the constitutive equations

σi j = 2µei j + δi j (λekk − β1�− β2c), (4)

ζ = −β2ekk + bc − a�, (5)

where τ0, the thermal relaxation time, ensures that the heat-conduction equation satisfied by temperature� predicts
a finite speed of heat propagation and τ, the diffusion relaxation time, ensures that the equation satisfied by the
concentration c also predicts a finite speed of propagation of matter from one medium to the other. The superposed
dot denotes the derivative with respect to time.

We use a fixed Cartesian coordinate system (x, y, z) with origin on the surface z = 0, which is stress-free and
with the z-axis directed vertically into the medium. The region z > 0 is occupied by an elastic solid with generalized
thermodiffusion. A mechanical (normal or tangential ) load of magnitude F0 is assumed to be acting at a point on
the surface z = 0 of the medium.

We restrict our analysis parallel to the xz-plane. The boundary of the medium is assumed to be thermally insulated.
The chemical potential is also assumed to be a known function of time. We shall use the following non-dimensional
variables

x∗ = ω

c1
x, z∗ = ω

c1
z, t∗ = ωt, τ ∗ = ωτ, τ ∗

0 = ωτ0,

u∗
x = ρωc1

β1T0
ux , u∗

z = ρωc1

β1T0
uz, σ ∗

i j = σi j

β1T0
, (6)

c∗ = c

C0
, ζ ∗ = ζ

P0
, �∗ = �

T0
,

where

c2
1 = λ+ 2µ

ρ
, ω = ρCE c2

1

K
. (7)

Using the quantities given by (6) in (1)–(3), we obtain the equations in dimensionless form (dropping the asterisks
for convenience) as

∂2ux

∂x2 + a1
∂2uz

∂x∂z
+ a2

∂2ux

∂z2 − ∂�

∂x
− a3

∂c

∂x
− ∂2ux

∂t2 = 0, (8)

a2
∂2uz

∂x2 + a1
∂2ux

∂x∂z
+ ∂2uz

∂z2 − ∂�

∂z
− a3

∂c

∂z
− ∂2uz

∂t2 = 0, (9)

τm
∂�

∂t
+ b1τm

∂

∂t

(
∂ux

∂x
+ ∂uz

∂z

)
+ b2τm

∂c

∂t
− b3∇2� = 0, (10)

∂

∂x

(∇2ux
) + ∂

∂z

(∇2uz
) + b4∇2�+ b5τn

∂c

∂t
− b6∇2c = 0, (11)

where

a1 = λ+ µ

λ+ 2µ
, a2 = µ

λ+ 2µ
, a3 = β2C0

β1T0
, b1 = β2

1 T0

ρ2c2
1CE

,

b2 = aC0

CEρ
, b3 = Kω

ρc2
1CE

, b4 = aρc2
1

β1β2
, b5 = ρC0c4

1

Dβ1β2T0ω
, (12)

b6 = bρC0c2
1

β1β2T0
, τm =

(
1 + τ0

∂

∂t

)
, τn =

(
1 + τ

∂

∂t

)
,

∇2 = ∂2

∂x2 + ∂2

∂z2 .

With the aid of the expressions relating displacement components ux , uz to the scalar potential φ and vector
potential ψ in dimensionless form given by
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ux = ∂φ

∂x
− ∂ψ

∂z
, uz = ∂φ

∂z
+ ∂ψ

∂x
(13)

in (8)–(11), we obtain[
∇2 − ∂2

∂t2

]
φ −�− a3c = 0, (14)

∇2ψ − 1

a2

∂2ψ

∂t2 = 0, (15)
[
∇2 − 1

b3
τm
∂

∂t

]
�− b1

b3
τm
∂

∂t
∇2φ − b2

b3
τm
∂c

∂t
= 0, (16)

∇2φ + b4∇2�+
[

b5τn
∂

∂t
− b6∇2

]
c = 0. (17)

3 Solution of the problem

3.1 Formulation of a vector–matrix differential equation in the transformed domain

We now apply the Laplace and Fourier transforms defined by

f̂ (x, z, p) =
∞∫

0

f (x, z, t)e−pt dt, (18)

f̃ (ξ, z, p) =
∞∫

−∞
f̂ (x, z, p)eiξ x dx, (19)

where p and ξ are the Laplace- and Fourier-transform variables respectively, so that (14)–(17) reduce to the form

d2φ̃

dz2 = R11φ̃ + R12�̃+ R13c̃, (20)

d2�̃

dz2 = R21φ̃ + R22�̃+ R23c̃, (21)

d2C̃

dz2 = R31φ̃ + R32�̃+ R33c̃, (22)
[

d2

dz2 −
(
ξ2 + p2

a2

)]
ψ̃ = 0, (23)

where

R11 = (p2 + ξ2), R12 = 1, R13 = a3,

R21 = f1, R22 = f2, R23 = f3,

R31 = g1

b6 − a3
, R32 = g2

b6 − a3
, R33 = g3

b6 − a3
,

g1 = p4 + f1(1 + b4), (24)

g2 = p2 + ( f2 − ξ2)(1 + b4),

g3 = a3(p
2 − ξ2)+ f3(1 + b4)+ b5τ

∗
n p + b6ξ

2,

f1 = b1

b3
τ ∗

m p3, f2 = (1 + b1)

b3
τ ∗

m p + ξ2, f3 = (b1a3 + b2)

b3
τ ∗

m p.

τ ∗
m = 1 + τ0 p, τ ∗

n = 1 + τp.
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The system of equations (20)–(22) can be written in the form of a vector–matrix differential equation as follows:

d

dz
V (ξ, z, p) = A(ξ, p)V (ξ, z, p), (25)

where

V =
[

U
D∗U

]
, A =

[
O I
A1 O

]
, U =

⎡
⎣ φ̃

�̃

c̃

⎤
⎦ , O =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ ,

I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , A1 =

⎡
⎣ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ ,

(26)

where D∗ denotes the differentiation with respect to z, i.e., d/dz.

3.2 Solution of the vector–matrix differential equation

We now proceed to solve Eq. 25 by an eigenvalue approach. To solve (25), we take

V (ξ, z, p) = X (ξ, p)eqz, (27)

so that

A(ξ, p)V (ξ, z, p) = qV (ξ, z, p), (28)

which leads to an eigenvalue problem. The characteristic equation corresponding to the matrix A is given by

det[A − q I ] = 0, (29)

which on expansion gives

q6 − λ1q4 + λ2q2 − λ3 = 0, (30)

where

λ1 = R11 + R22 + R33,

λ2 = R11 R22 + R22 R33 + R33 R11 − R12 R21 − R23 R32 − R31 R13, (31)

λ3 = R11(R22 R33 − R23 R32)+ R12(R23 R31 − R21 R33)+ R13(R21 R32 − R22 R31).

The roots of Eq. 30, which are the eigenvalues of the matrix A, are ±qi , i = 1, 2, 3. We assume that the real
parts of qi are positive. The eigenvector X (ξ, p) corresponding to the eigenvalues qi can be determined by solving
the homogeneous equation

[A − q I ]X (ξ, p) = 0. (32)

The set of eigenvectors Xi (ξ, p), (i = 1, 2, 3, 5, 6, 7) may be obtained as

Xi (ξ, p) =
[

Xi1(ξ, p)
Xi2(ξ, p)

]
, (33)

where

Xi1(ξ, p) =
⎡
⎣ si

ri

1

⎤
⎦ , Xi2(ξ, p) =

⎡
⎣ si qi

ri qi

qi

⎤
⎦ ,

q = qi ; i = 1, 2, 3

X j1(ξ, p) =
⎡
⎣ si

ri

1

⎤
⎦ , X j2(ξ, p) =

⎡
⎣−si qi

−ri qi

−qi

⎤
⎦ ,

123



84 S. Deswal, S. Choudhary

j = i + 4, q = −qi ; i = 1, 2, 3 (34)

si = si1 − si2 − R23si3

R21si3
,

ri = R31 R13 − (R33 − q2
i )(R11 − q2

i )

R32(R11 − q2
i )− R12 R31

,

si1 = (R11 − q2
i )(R22 − q2

i )(R33 − q2
i ),

si2 = R31 R13(R22 − q2
i ),

si3 = (R32(R11 − q2
i )− R12 R31); i = 1, 2, 3.

The solution of (25) is given by

V (ξ, z, p) =
3∑

i=1

[Bi Xi (ξ, p)eqi z + Bi+4 Xi+4(ξ, p)e−qi z] (35)

and the solution of (23) is

ψ̃ = B4eq4z + B8e−q4z, (36)

where Bi (i = 1, 2, 3, 4, 5, 6, 7, 8) are arbitrary constants and

q4 =
√
ξ2 + p2

a2
. (37)

Equations (35) and (36) represent the solution of the general problem in the case of generalized thermodiffusion
elasticity by employing the eigenvalue approach and therefore can be applied to a broad class of problems in the
domain of Laplace and Fourier transforms.

4 Application: interactions due to a mechanical load

In this section, the general solutions for displacement, stresses, temperature field, deviation in concentration and
chemical potential given by (35) and (36) will be used to yield the response of a half-space subjected to an impulsive
mechanical load. The constants Bi will be determined by imposing the proper boundary conditions. These constants,
when substituted in Eqs. 35 and 36, enable us to obtain the required physical quantities in the Fourier- and Laplace-
transformed (ξ, z, p) domain. The final solution in the original domain (x, z, t) is obtained by a numerical inversion
of both transforms.

4.1 Case 1: Load in the normal direction

In the half-space, the load F(x) is applied in the normal direction at the origin of the co-ordinate system. The
boundary z = 0 is assumed to be thermally insulated so that there is no variation of temperature and concentration
on it. Therefore, for this loading case, the boundary conditions are

σzz = −F(x)δ(t), σzx = 0,
∂�

∂z
= 0,

∂c

∂z
= 0, at z = 0, (38)

where F(x) = F0δ(x).

4.2 Case 2: Load in the tangential direction

In the half-space, the load F(x) is applied in the tangential direction at the origin of the co-ordinate system. The
boundary conditions in this case are
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Impulsive effect on an elastic solid 85

σzz = 0, σzx = −F(x)δ(t),
∂�

∂z
= 0,

∂c

∂z
= 0, at z = 0. (39)

It can be seen that eight unknowns are to be determined in (35) and (36) and only four boundary conditions
appear in each case. For the half-space the radiation conditions imply outgoing waves with decreasing amplitudes
in the positive z-direction. Therefore, the radiation conditions require that B1 = B2 = B3 = B4 = 0.

We obtain the expressions for the displacement components, stresses, temperature field, concentration and
potential as

˜σzz = e1 B5e−q1z + e2 B6e−q2z + e3 B7e−q3z + e4 B8e−q4z, (40)

˜σzx = k1 B5e−q1z + k2 B6e−q2z + k3 B7e−q3z − k4 B8e−q4z, (41)

ũx = −iξ [s1 B5e−q1z + s2 B6e−q2z + s3 B7e−q3z] + q4 B8e−q4z, (42)

ũz = −[s1q1 B5e−q1z + s2q2 B6e−q2z + s3q3 B7e−q3z] − iξ B8e−q4z, (43)

�̃ = r1 B5e−q1z + r2 B6e−q2z + r3 B7e−q3z, (44)

c̃ = B5e−q1z + B6e−q2z + B7e−q3z, (45)

ζ̃ = M1 B5e−q1z + M2 B6e−q2z + M3 B7e−q3z, (46)

where

Bi+4 = �i

�
, i = 1, 2, 3, 4,

Mi = −e∗(q2
i − ξ2)si + bC0

P0
− aT0ri

P0
, i = 1, 2, 3,

� = (r3 − r2)q2q3(e1k4 + e4k1)+ (r1 − r3)q1q3(e2k4 + e4k2)+ (r2 − r1)q1q2(e3k4 + e4k3), (47)

ei = q2
i si − a∗si − ri − b∗; i = 1, 2, 3, e4 = iξq4

(
1 − λ

ρc2
1

)
,

ki = 2iξsi qiµ

ρc2
1

; i = 1, 2, 3, k4 = µ

ρc2
1

(ξ2 + q2
4 ),

e∗ = β1β2T0

ρc2
1 P0

, a∗ = λξ2

ρc2
1

, b∗ = β2C0

β1T0
.

4.3 Case 1: In the normal direction

The values of �i ; i = 1, 2, 3, 4, when the load is acting in the normal direction, are

�1 = F0k4(r2 − r3)q2q3, �2 = F0k4(r3 − r1)q3q1, �3 = F0k4(r1 − r2)q1q2,

�4 = F0 [k1(r2 − r3)q2q3 + k2(r3 − r1)q1q3 + k3(r1 − r2)q1q2] . (48)

4.4 Case 2: In the tangential direction

The solution for this case is as in (40)–(46), only with the replacement of �i ; i = 1, 2, 3, 4 as

�1 = F0e4(r2 − r3)q2q3, �2 = F0e4(r3 − r1)q3q1, �3 = F0e4(r1 − r2)q1q2,

�4 = −F0[e1(r2 − r3)q2q3 + e2(r3 − r1)q1q3 + e3(r1 − r2)q1q2]. (49)
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4.5 Particular case I

By taking c = D = a = b = β2 = 0, we obtain the expressions for the displacement components, stresses and
temperature field in the generalized thermoelastic medium as:

˜σzz = e∗
1 B∗

4 e−q∗
1 z + e∗

2 B∗
5 e−q∗

2 z + e∗
3 B∗

6 e−q∗
3 z, (50)

˜σzx = k∗
1 B∗

4 e−q∗
1 z + k∗

2 B∗
5 e−q∗

2 z − k∗
3 B∗

6 e−q∗
3 z, (51)

ũx = −iξ [s∗
1 B∗

4 e−q∗
1 z + s∗

2 B∗
5 e−q∗

2 z] + q∗
3 B∗

6 e−q∗
3 z, (52)

ũz = −[s∗
1 q∗

1 B∗
4 e−q∗

1 z + s∗
2 q∗

2 B∗
5 e−q∗

2 z] − iξ B∗
6 e−q∗

3 z, (53)

�̃ = B∗
4 e−q∗

1 z + B∗
5 e−q∗

2 z, (54)

where

q∗2
i =

λ∗
1 + (−1)i+1

√
λ∗2

1 − 4λ∗
2

2
; i = 1, 2, (55)

are the roots of the equation

q4 − λ∗
1q2 + λ∗

2 = 0, (56)

where

λ∗
1 = R11 + R22, λ∗

2 = R11 R22 − R21 R12,

q∗
3 = q2

4 , B∗
i+3 = �∗

i /�
∗; i = 1, 2, 3 ,

�∗ = q∗
1 (e

∗
2k∗

3 + e∗
3k∗

2)− q∗
2 (e

∗
3k∗

1 + e∗
1k∗

3),

e∗
i = q∗2

i s∗
i − a∗s∗

i − 1; i = 1, 2, e∗
3 = iξq∗

3

(
1 − λ

ρc2
1

)
,

k∗
i = 2µ

ρc2
1

(
iξq∗

i s∗
i

) ; i = 1, 2, k∗
3 = µ

ρc2
1

(
q∗2

3 + ξ2
)
,

s∗
i = − R22−q∗2

i
R21

; i = 1, 2.

(57)

4.5.1 Case 1: In the normal direction

The values of �∗
i ; i = 1, 2, 3, when the load is in the normal direction, are

�∗
1 = F0q∗

2 k∗
3 , �∗

2 = −F0q∗
1 k∗

3 , �∗
3 = F0

[
q∗

2 k∗
1 − q∗

1 k∗
2

]
. (58)

4.5.2 Case 2: In the tangential direction

The solutions for this case are as in (50)–(54) only with the replacement of �∗
i ; i = 1, 2, 3 as

�∗
1 = F0q∗

2 e∗
3, �∗

2 = −F0q∗
1 e∗

3, �∗
3 = F0

[
q∗

1 e∗
2 − q∗

2 e∗
1,

]
. (59)

4.6 Particular case II

If we neglect the thermodiffusion effect from the medium considered, the corresponding expressions for the
displacement components and stresses are given by:

˜σzz = e′
1 B ′

3e−q ′
1z + e′

2 B ′
4e−q ′

2z, (60)

˜σzx = k′
1 B ′

3e−q ′
1z − k′

2 B ′
4e−q ′

2z, (61)

ũx = −(iξ)B ′
3e−q ′

1z + q ′
2 B ′

4e−q ′
2z, (62)

ũz = −q ′
1 B ′

3e−q ′
1z + iξ B ′

4e−q ′
2z, (63)
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where

q ′
1 =

√
p2 + ξ2, q ′

2 =
√

p2

a2
+ ξ2,

B ′
i+2 = �′

i/�
′; i = 1, 2, �′ = −(e′

1k′
2 + e′

2k′
1),

e′
1 = q ′2

1 − a∗, e′
2 = iξq ′

2

(
1 − λ

ρc2
1

)
,

k′
1 = 2µ

ρc2
1

(iξq ′
1), k′

2 = µ

ρc2
1

(ξ2 + q ′2
2 ). (64)

4.6.1 Case 1: In the normal direction

The values of �′
i ; i = 1, 2, when the load is in the normal direction are

�′
1 = F0k′

2, �′
2 = F0k′

1. (65)

4.6.2 Case 2: In the tangential direction

The solution for this case are as in (60)–(63), only with the replacement of �′
i ; i = 1, 2 as

�′
1 = F0e′

2, �′
2 = −F0e′

1. (66)

5 Inversion of transforms

The transformed displacements, stresses, temperature field, concentration and chemical potential (40)–(46),
(50)–(54) and (60)–(63) are functions of z, the parameters of Laplace and Fourier transforms p and ξ, respec-
tively, and hence are of the form f̃ (ξ, z, p). To get the function f (x, z, t) in the physical domain, first we invert the
Fourier transform using

f̂ (x, z, p) = 1

2π

∞∫
−∞

e−iξ x f̃ (ξ, z, p) dξ = 1

π

∞∫
0

{cos(ξ x) f̃e − i sin(ξ x) f̃o} dξ, (67)

where f̃e and f̃o denote the even and odd parts of the function f̃ (ξ, z, p), respectively. Thus, expression (67) gives
us the Laplace transform f̂ (x, z, p) of function f (x, z, t). Following Honig and Hirdes [29], we can convert the
Laplace transform function f̂ (x, z, p) to f (x, z, t).

The last step is to evaluate the integral in Eq. 67. The method for evaluating this integral is given in [30, Chap. 4];
it involves the use of Romberg’s integration with adaptive step size. This also uses the results from a successive
refinement of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size
tends to zero.

6 Numerical results and discussion

Copper was chosen for the purpose of numerical evaluations. The material constants of the problem are given by
Thomas [31] in SI units as follows:
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T0 = 293 K, ρ = 8954 kg/m3, τ0 = 0.02 s, τ = 0.2s,

CE = 383.1 J/( kg K), αt = 1.78 × 10−5K−1, K = 386 W/(m K),

λ = 7.76 × 1010 kg/(m s2), µ = 3.86 × 1010 kg/(m s2),

αc = 1.98 × 10−4 m3/kg, D = 0.85 × 10−8 kg s/m3,

a = 1.2 × 104 m2/(s2 K), b = 0.9 × 106 m5/(kg s2).

Comparisons are given for the dimensionless normal displacement uz(= uz/F0), normal stress σzz(= σzz/F0),
temperature �(= �/F0), concentration c(= c/F0) and chemical potential ζ(= ζ/F0) for three different cases: a
solid with thermoelastic diffusion (THED), a thermoelastic solid (THE) and an elastic solid subjected to normal
and tangential impulsive loads have been studied and shown in Figs. 1–10 . The computations are carried out for
two values of the non-dimensional time, namely for t = 0.05 and t = 0.10 at z = 1.0; the initial concentration is
C0 = 1 and the initial potential P0 = 1, in the range 0 ≤ x ≤ 20.

6.1 Case I: normal load applied

The comparisons of the dimensionless normal displacement uz, normal stress σzz, temperature�, deviation in mass
concentration c and deviation in chemical potential ζ for the three different cases are studied in Figs. 1–5.

Figure 1 represents the variation of the normal displacement uz with distance x . The values of the displacement
uz have been magnified by multiplying with 10 for the THE theory and by 100 for the elastic theory for both
times to depict the comparsion simultaneously in same figure. The values of the displacement uz for the THED and
THE theories increase with distance, whereas for the case of the elastic theory, the response of the displacement
with respect to distance x is reverse. Very near to the point of application of the source there is a great difference
in magnitude of the normal displacement for all three considered media. The effect of diffusion can be observed
clearly from this figure by comparing the curves for the THED and THE theories.

Figure 2 shows the variations of the normal stress σzz with x resulting from a normal load. The values of the
normal stress for the THED theory have been multiplied by 10 to enable comparison in the same ranges. For both
times, the values of σzz for the THED theory are greater than the corresponding values for thermoelastic and elastic
solids in the initial range. The reverse variations of the normal stress for the THED theory to that for the THE
and elastic theories are observed owing to the diffusion factor. The temperature variation with distance due to a
normal load is observed in Fig. 3. The values of the temperature � for the THED theory have been magnified by
multiplying with 102. This large difference in numerical values of the temperature � between the two theories is
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Fig. 1 Distribution of normal displacement uz (due to normal load) versus distance
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Fig. 2 Distribution of normal stress σzz (due to normal load) versus distance
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Fig. 3 Distribution of temperature � (due to normal load) versus distance

due to the presence of a concentration field in the THED theory. The magnitude of the temperature obtained from
the THED theory seems to vanish earlier than that for the THE theory, where diffusion effects are absent.

The variation of the mean concentration about the initial concentration is represented by Fig. 4 for the THED
theory. The difference in the values of c at a particular point for two different times can easily be observed from
the graphs. It is also clearly depicted in the figure that the values of the mean concentration c are maximum at the
origin for both times and, after a small oscillatory behaviour, seem to be vanishing far from origin. Figure 5 presents
the distribution of the change in the chemical potential about the initial potential with distance x at both times. The
values of the chemical potential for a particular range show sufficient difference for the two times.

6.2 Case II: tangential load applied

The comparisons of the dimensionless normal displacement uz, normal stress σzz, temperature �, concentration
deviation c and change in chemical-potential ζ for the three different cases are studied in Figs. 6–10.

Figure 6 shows the variations of the normal displacement uz with x due to the application of a tangential load.
The values of the displacement uz for THE and elastic theories have been multiplied by 102 and 104, respectively.
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Fig. 4 Distribution of concentration c (due to normal load) versus distance
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Fig. 5 Distribution of chemical potential ζ (due to normal load) versus

The trend of change in the displacement for the THED and elastic theories is opposite in nature to that for the THE
theory for both times, whereas the behaviour of the variation with time are the same for all the three theories. Due to
the influence of the chemical-mass term, the values of the normal displacement uz are large in the THED medium
in comparision with THE and elastic media. Figure 7 depicts the variations of the normal stress σzz with distance x
due to the application of a tangential load. The values of the normal stress for the THE theory have been magnified
by multiplying with 10 for both times and for the elastic theory the values are multiplied by 102 for both times. The
behaviour of the variations of σzz for the THED theory is similar to that due to a normal load in Fig. 2. As the value
of x increases, the values of the normal stress approach zero for all cases .

Figure 8 presents the variations of the temperature with distance x . The behaviour of the variations of the
temperature for the THED theory is opposite in nature to that for the THE theory owing to the presence of the
chemical-mass term. The deviation of the concentration from the mean value for the THED theory has been
depicted in Fig. 9. The values of the concentration for a particular range show sufficient difference for the two
times. Figure 10 shows the deviation of the chemical potential from the initial chemical potential with distance x
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Fig. 6 Distribution of normal displacement uz (due to tangential load) versus distance
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Fig. 7 Distribution of normal stress σzz (due to tangential load) versus distance

for the THED theory for both times. The values of ζ are maximum at the origin for both times and are decreasing
smoothly thereafter in the further range.

7 Conclusion

The work presented in this article provides a mathematical model to obtain the two-dimensional solutions of
temperature, displacements, stresses, mass concentration and chemical potential due to an impulsive mechanical
load in a semi-infinite medium in the context of generalized thermodiffusion elasticity. An eigenvalue approach is
used, which has the advantage of finding the solution of equations in the coupled form directly in matrix notation.
It is evident from the figures that the effect due to a mechanical load on a generalized thermoelastic medium with
diffusion depends upon the distance x .

Variations in the various physical quantites are observed to be quite significant at small times and near the
vicinity of the loads/sources and remain close to zero afterwards. This is so because the free surface is subjected
to an instantaneous source. This establishes the transient behaviour of the waves. Thus, the effect of the loading

123



92 S. Deswal, S. Choudhary

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Distance x

T
em

p
er

at
u

re
 d

is
tr

ib
u

ti
o

n
 

t=0.05, Thermoelastic diffusion
t=0.10, Thermoelastic diffusion
t=0.05, Thermoelastic
t=0.10, Thermoelastic

Fig. 8 Distribution of temperature � (due to tangential load) versus distance
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Fig. 9 Distribution of concentration c (due to tangential load) versus distance

does not reach infinity instantaneously but remains in a bounded domain that expands with the passage of time,
as demanded by the L–S theory of thermoelasticity. Significant effects of the chemical-mass term, diffusion and
thermal parameters on the normal displacement, stress and temperature are observed for two values of the time as
depicted in the figures.

The analysis of the normal displacement, normal-stress component, temperature, mean concentration and
chemical-potential deviation generated in a body due to an impulsive mechanical load (normal and tangiential)
is an interesting mechanical problem with applications in determining the stability of a medium. Using these
results, it is possible to investigate the disturbance caused by more general sources for practical applications. The
present theoretical results may provide interesting information for experimental scientists/researchers/seismologists
working on this subject. The introduction of diffusion parameters to the generalized thermoelastic medium provides
a more realistic model for these studies. The methodology used in the present article is applicable to a wide range
of problems in thermodynamics.
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Fig. 10 Distribution of chemical potential ζ (due to tangential load) versus distance

Appendix. Nomenclature

λ,µ Lame’s constants
σi j components of stress tensor
ui components of displacement vector
CE specific heat at constant strain
T0 reference temperature chosen so that |T −T0|

T0
� 1

K thermal conductivity
P chemical potential per unit mass at non equilibrium conditions
P0 chemical potential per unit mass of natural state
C0 mass concentration at natural state
c C − C0

τ0 thermal-relaxation time
a measure of thermodiffusion effect
β1 (3λ+ 2µ)αt ,

αt coefficient of linear thermal expansion
F0 intensity of the applied mechanical load
φ scalar potential
δ(.) Dirac delta function.
ρ density of the medium
ei j components of strain tensor
t time
T absolute temperature
� T − T0

ekk dilatation
δi j Kronecker delta
ζ P − P0

C non-equilibrium concentration
D thermodiffusion constant
τ diffusion-relaxation time
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b measure of diffusive effects
β2 (3λ+ 2µ)αc

αc coefficient of linear diffusion expansion
u displacement vector
ψ vector potential
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